Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering

BEC703 Microwave Engineering Seventh Semester, 2017-18 (Odd Semester)

Course (catalog) description

Microwave Engineering introduces the student to RF/microwave analysis methods and design techniques. Scattering parameters are defined and used to characterize devices and system behavior. Passive and active devices commonly utilized in microwave subsystems are analyzed .To understand about microwave measurements.

Compulsory/Elective course	:	Compulsory for ECE studen	nts
Credit & contact hours	:	3 & 45	
Course Coordinator	:	Ms. S.Beulah Hemalatha	Assoc.Professor

:

Instructors

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms. S.Beulah Hemalatha	Final year	SA block		beulahhemalatha.ece	12.30-1.30 pm
Ms.G.Kanagavalli	Final year	SA block			12.30-1.30 pm

Relationship to other courses:

 Pre -requisites
 :
 Electromagnetic Fields and waves.

 Assumed knowledge
 :
 The students will have a basic knowledge in field theory and electron Devices and communication theory.

 Following courses
 :

Syllabus Contents

UNIT I MICROWAVE NETWORK THEORY

Introduction –Microwave frequency range, applications of microwaves.– Scattering matrix representation of multi port network -properties of S-parameters – S matrix of a two port network with mismatched load – Z and ABCD parameters-Comparison between [S] - [Z] and [Y] matrices

UNIT II MICROWAVE PASSIVE DEVICES

Coaxial cables-connectors and adapters – Wave guides- Matched terminations –Rectangular to circular wave guide transition–Wave guide corners – Bends and twists – Windows –Attenuators – Phase shifters – Wave guide tees– E plane tee – H plane tee – Magic tee – Isolators – Circulators –Directional couplers – scattering matrix derivation for all components.

7 HOURS

10 HOURS

UNIT III MICROWAVE VACCUM TUBE DEVICES

Introduction – Two cavity klystron amplifier – Mechanism and mode of operation –Power output and efficiency -Applications – Reflex klystron oscillator – Mechanism and mode of operation-Power output – Efficiency – Mode curve – Applications – TWT amplifier – Principle of operation-gain and applications – Magnetron oscillator – Hull cut-off voltage mechanism of operation– Power output and efficiency –Applications – Numerical problems.

UNIT IV MICROWAVE SEMICONDUCTOR DEVICES AND CIRCUITS 9 HOURS

Principles of tunnel diodes - Varactor and Step recovery diodes – Transferred Electron Devices -Gunn diode-Avalanche Transit time devices- IMPATT and TRAPATT Devices- Parametric Amplifiers – Introduction to Micro strip Lines, & Monolithic Microwave Integrated circuits-Materials, MMIC Fabrication Techniques.

UNIT V MICROWAVE MEASUREMENTS

Introduction – Slotted line carriage — Spectrum analyzer – Network analyzer – Power measurements – Schottky barrier diode sensor –Bolometer sensor – Power sensor – High power measurement – Insertion loss and attenuation measurement – VSWR measurement – Low and high VSWR – Impedance measurement – Frequency measurement – Measurement of cavity Q – Dielectric measurement of a solid by wave-guide method – Antenna measurement – Radiation pattern – Phase and gain.

TEXT BOOK

1. Annapurna Das, Sisir K. Das, "Microwave Engineering", TMH Co., Ltd., 1999. Reprint 2001.

REFERENCES

- 1. Collin R.E., "Foundation of Microwave Engineering", 2nd Edition, TMH, 1992.
- 2. Samuel Y. Liao, "Microwave devices and Circuits", PHI Pvt Ltd., 1995.
- 3. http://www.microwaves101.com

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University	ТВА	All sessions / Units	3 Hrs.
4	Examination			

10 HOURS

9 HOURS

Mapping of Instructional Objectives with Program Outcome

This course is to expose basics of Microwave components. To introduce the students to a few microwave measurements.		Correlates to program outcome	
	Н	М	L
Demonstrate the ability to identify formulate and solve microwave network related problems	а	F,j	-
Understand the need for the different microwave components and their specifications	i	a,b,c,d,k	-
Understand the working principles of different microwave sources	-	a,c,d,e	-
Demonstrate the ability to identify microwave active devices along with their applications.	j	a,e,g	-
Know how to model and determine the performance characteristics of a microwave circuit or system	-	b,c,I,k	-
Identify the measurement techniques for different parameters like VSWR, impedance, frequency, power of microwave sources and loads.	f	d	-

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

UNIT I MICROWAVE NETWORK THEORY 1. Introduction to microwave networks No 2. Microwave frequency range, applications of microwaves No 3. Scattering matrix representation of multi port network No 4. properties of S-parameters No 5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No 9. Wave guides-Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees – E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 17. Directional couplers – scattering matrix derivation No 17. Directional couplers – sca	Session	Topics	Problem solving (Yes/No)	Text / Chapter
1. Introduction to microwave networks No 2. Microwave frequency range, applications of microwaves No 3. Scattering matrix representation of multi port network No 4. properties of S-parameters No 5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides - Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows –Attenuators No No 12. Phase shifters No Introduction derivation. 13. Wave guide tees – E plane tee - scattering matrix derivation. No Introduction 14. H plane tee - scattering matrix derivation. No Introduction 15. Magic tee - scattering matrix derivation No Introduction 17. Directional couplers – scattering matrix derivation No	UNIT I MIC	ROWAVE NETWORK THEORY	·	
2. Microwave frequency range, applications of microwaves No 3. Scattering matrix representation of multi port network No 4. properties of S-parameters No 5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No Operation of Comparison between [S] - [Z] and [Y] matrices 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition-Wave guide corners - Bends and twists. No 11. Windows - Attenuators No 13. Wave guide tees - E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 17. Directional couplers - scattering matrix derivation No 18. Two cavity klystron amplifier - Mechanism and mode of operation No 19. Power output and efficiency -Applications No 19. Power output and effic	1.	Introduction to microwave networks	No	
3. Scattering matrix representation of multi port network No 4. properties of 5-parameters No 5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide No Intervention of the second terminations 11. Windows – Attenuators No Intervention 11. Windows – Attenuators No Intervention 12. Phase shifters No Intervention 13. Wave guide tees – E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation. No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 19. Power output to efficiency -Applications	2.	Microwave frequency range, applications of microwaves	No	
4. properties of S-parameters No [T1] Chapter -6 5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners - Bends and twists. Int Windows - Attenuators No 11. Windows - Attenuators No Int Windows - Attenuators No 12. Phase shifters No No Int Work 13. Wave guide tees- E plane tee - scattering matrix derivation. No Int Windows - Circulators No 15. Magic tee - scattering matrix derivation No Int UII III MICROWAVE VACCUM TUBE DEVICES Int Windows - Circulators No 17. Directional couplers - scattering matrix derivation No No Int UII III MICROWAVE VACCUM TUBE DEVICES 18. Two cavity klystron amplifier - Mechanism and mode of operation No No Int Chapter -9 <t< td=""><td>3.</td><td>Scattering matrix representation of multi port network</td><td>No</td><td></td></t<>	3.	Scattering matrix representation of multi port network	No	
5. S matrix of a two port network with mismatched load No 6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition—Wave guide corners – Bends and twists. No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees – E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 17. Directional couplers – scattering matrix derivation No 17. Directional couplers – scattering matrix derivation No 19. Power output and efficiency -Applications No <td< td=""><td>4.</td><td>properties of S-parameters</td><td>No</td><td>[T1] Chapter -6</td></td<>	4.	properties of S-parameters	No	[T1] Chapter -6
6. Z and ABCD parameters No 7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MCROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees– E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 19. Power output and efficiency -Applications No 19. Power output - Efficiency No	5.	S matrix of a two port network with mismatched load	No	
7. Comparison between [S] - [Z] and [Y] matrices No UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows –Attenuators No 12. Phase shifters No 13. Wave guide tees– E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency No [T1] Chapter -9	6.	Z and ABCD parameters	No	
UNIT II MICROWAVE PASSIVE DEVICES 8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees– E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency No [T1] Chapter -9	7.	Comparison between [S] - [Z] and [Y] matrices	No	
8. Coaxial cables-connectors and adapters No 9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees– E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation. No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No	UNIT II M	CROWAVE PASSIVE DEVICES		
9. Wave guides- Matched terminations No 10. Rectangular to circular wave guide transition–Wave guide corners – Bends and twists. No 11. Windows – Attenuators No 12. Phase shifters No 13. Wave guide tees– E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation. No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No	8.	Coaxial cables-connectors and adapters	No	
10.Rectangular to circular wave guide transition–Wave guide corners – Bends and twists.No[T1] Chapter -6,11.Windows – AttenuatorsNo[T1] Chapter -6,12.Phase shiftersNoNo13.Wave guide tees– E plane tee - scattering matrix derivation.No14.H plane tee - scattering matrix derivation.No15.Magic tee - scattering matrix derivationNo16.Isolators – CirculatorsNo17.Directional couplers – scattering matrix derivationNo18.Two cavity klystron amplifier – Mechanism and mode of operationNo19.Power output and efficiency -ApplicationsNo20.Reflex klystron oscillator – Mechanism and mode of operationNo21.Power output – EfficiencyNo	9.	Wave guides- Matched terminations	No	
corners – Bends and twists.Image: Corners – Bends and twists.Image: Corners – Bends and twists.11.Windows –AttenuatorsNo12.Phase shiftersNo13.Wave guide tees– E plane tee - scattering matrix derivation.No14.H plane tee - scattering matrix derivation.No15.Magic tee - scattering matrix derivationNo16.Isolators – CirculatorsNo17.Directional couplers – scattering matrix derivationNoUNIT III MICROWAVE VACCUM TUBE DEVICESImage: Corner of the scattering and mode of operationNo19.Power output and efficiency -ApplicationsNo20.Reflex klystron oscillator – Mechanism and mode of operationNo21.Power output – EfficiencyPage 3 of 7No	10.	Rectangular to circular wave guide transition–Wave guide	No	
11. Windows – Attenuators No [T1] Chapter -6, 12. Phase shifters No 13. Wave guide tees – E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators – Circulators No 17. Directional couplers – scattering matrix derivation No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency No		corners – Bends and twists.		
12.Phase shiftersNo13.Wave guide tees- E plane tee - scattering matrix derivation.No14.H plane tee - scattering matrix derivation.No15.Magic tee - scattering matrix derivationNo16.Isolators - CirculatorsNo17.Directional couplers - scattering matrix derivationNoUNIT III MICROWAVE VACCUM TUBE DEVICESNo18.Two cavity klystron amplifier - Mechanism and mode of operationNo19.Power output and efficiency -ApplicationsNo20.Reflex klystron oscillator - Mechanism and mode of operationNo21.Power output - EfficiencyPage 3 of 721.Power output - EfficiencyNo	11.	Windows – Attenuators	No	[T1] Chapter -6,
13. Wave guide tees- E plane tee - scattering matrix derivation. No 14. H plane tee - scattering matrix derivation. No 15. Magic tee - scattering matrix derivation No 16. Isolators - Circulators No 17. Directional couplers - scattering matrix derivation No 18. Two cavity klystron amplifier - Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator - Mechanism and mode of operation No 21. Power output - Efficiency Page 3 of 7 No	12.	Phase shifters	No	
14.H plane tee - scattering matrix derivation.No15.Magic tee - scattering matrix derivationNo16.Isolators - CirculatorsNo17.Directional couplers - scattering matrix derivationNoUNIT III MICROWAVE VACCUM TUBE DEVICES18.Two cavity klystron amplifier - Mechanism and mode of operationNo19.Power output and efficiency -ApplicationsNo20.Reflex klystron oscillator - Mechanism and mode of operationNo21.Power output - EfficiencyPage 3 of 7No	13.	Wave guide tees- E plane tee - scattering matrix derivation.	No	
15.Magic tee - scattering matrix derivationNo16.Isolators - CirculatorsNo17.Directional couplers - scattering matrix derivationNoUNIT III MICROWAVE VACCUM TUBE DEVICES18.Two cavity klystron amplifier - Mechanism and mode of operationNo19.Power output and efficiency -ApplicationsNo20.Reflex klystron oscillator - Mechanism and mode of operationNo21.Power output - EfficiencyPage 3 of 7No	14.	H plane tee - scattering matrix derivation.	No	
16. Isolators - Circulators No 17. Directional couplers - scattering matrix derivation No UNIT III MICROWAVE VACCUM TUBE DEVICES 18. Two cavity klystron amplifier - Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator - Mechanism and mode of operation No 21. Power output - Efficiency Page 3 of 7 No	15.	Magic tee - scattering matrix derivation	No	
17. Directional couplers – scattering matrix derivation No UNIT III WICROWAVE VACCUM TUBE DEVICES No 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No	16.	Isolators – Circulators	No	
UNIT III MICROWAVE VACCUM TUBE DEVICES 18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No	17.	Directional couplers – scattering matrix derivation	No	
18. Two cavity klystron amplifier – Mechanism and mode of operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No No No	UNIT III	MICROWAVE VACCUM TUBE DEVICES		
operation No 19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7	18.	Two cavity klystron amplifier – Mechanism and mode of	No	
19. Power output and efficiency -Applications No 20. Reflex klystron oscillator – Mechanism and mode of operation No 21. Power output – Efficiency Page 3 of 7 No		operation		
20. Reflex klystron oscillator – Mechanism and mode of operation No [T1] Chapter -9 21. Power output – Efficiency No	19.	Power output and efficiency -Applications	No	
21. Power output – Efficiency Page 3 of 7 No	20.	Reflex klystron oscillator – Mechanism and mode of	No	[T1] Chapter -9
	21.	Power output – Efficiency Page 3 of 7	No	

22.	Mode curve –Applications	No		
23.	TWT amplifier – Principle of operation	No		
24.	Gain and applications	No		
25.	Magnetron oscillator – Hull cut-off voltage	No		
26.	Mechanism of operation	No		
27.	Power output and efficiency – Applications	No		
UNIT IV I	MICROWAVE SEMICONDUCTOR DEVICES AND CIRCUITS			
28.	Principles of tunnel diodes	No		
29.	Varactor and Step recovery diodes	No		
30.	Transferred Electron Devices -Gunn diode-	No		
31.	Avalanche Transit time devices	No		
32.	IMPATT and TRAPATT Devices-	No	[T1] Chapter -10	
33.	Parametric Amplifiers	No		
34.	Introduction to Micro strip Lines	No		
35.	Monolithic Microwave Integrated circuits-Materials	No		
36.	MMIC Fabrication Techniques	No		
	MICROWAVE MEASUREMENTS			
37.	Slotted line carriage	No		
38.	Spectrum analyzer – Network analyzer –	No		
39.	Power measurements ,Schottky barrier diode sensor,	No		
	Bolometer sensor, Power sensor, High power measurement			
40.	Insertion loss and attenuation measurement	No	[T1] Chapter -13	
41.	VSWR measurement – Low and high VSWR	No		
42.	Impedance measurement – Frequency measurement	No		
43.	Measurement of cavity Q	No		
44.	Dielectric measurement of a solid by wave-guide method	No		
45.	Antenna measurement – Radiation pattern – Phase and gain.	No		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

-	5%
-	5%
-	10%
_	5%
-	5%
-	70%
	- - - -

Prepared by: S.Beulah Hemalatha Assoc professor , Department of ECE

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

b. An ability to design and conduct experiments, as well as to analyze and interpret data

c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints

such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d. An ability to function on multidisciplinary teams

e. An ability to identify, formulate, and solve engineering problems

- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

i. A recognition of the need for, and an ability to engage in life-long learning

j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Ms.S.BEULAH HEMALATHA	
Ms.G.KANAGAVALLI	

Course Coordinator

HOD/ECE